Hypernuclei (recent results from DA Φ NE and CEBAF)

ALMA UNIVERSITAS TAURINENSIS

Elena Botta

INFN - Sezione di Torino & Universita' di Torino

EINN09 September 28-October 2 2009 Milos Island, Greece

Talk outline

- Hypernuclei: what do they are?
- Hypernuclei production/spectroscopy
 FINUDA @ DAΦNE & E94-107 @ JLAB-Hall A
- Hypernuclei weak decay: decay modes, FINUDA
- Neutron-rich hypernuclei
- Conclusions

Hypernuclei: what do they are?

- Hypernuclei: strange nuclear systems (S=-1,-2,)
 N (n, p, 2N) → Y (Λ, Σ, Ξ)
 nuclei with a third dimension!
- S=-1 systems: Λ, Σ
 Λ hypernuclei: ~ 40 studied
 Σ hypernuclei: only ⁴_ΣHe exists (ΣN→ΛN conversion)
- S=-2 systems: only 6 $\Lambda\Lambda$ candidate events in emulsions ⁶_{$\Lambda\Lambda$}He, ¹⁰_{$\Lambda\Lambda$}Be, ¹¹_{$\Lambda\Lambda$}Be, ¹²_{$\Lambda\Lambda$}Be, ¹³_{$\Lambda\Lambda$}B Ξ -hypernuclei not yet observed ($\Sigma N \rightarrow \Lambda\Lambda$ conversion)

→ Λ-hypernuclei

Duality: Nuclear ↔ Particle Physics

Nuclei with a third dimension

Physics output (S=-1)

EINN09 September 28-October 2 2009 Milos Island, Greece

Why Strangeness Nuclear Physics ?

- Structure of baryons in nuclear medium and structure of nuclei as baryonic many-body systems can be better studied by introducing a strangeness degree of freedom into a nucleus
- Λ can be put deep inside a nucleus as an impurity and provides a sensitive probe of the nuclear interior
- A Λ doesn't suffer from Pauli blocking by the other N → it can penetrate into the nuclear interior and form deeply bound hypernuclear states
- In non strange nuclei the single particle strength is broadly fragmented with excitation energy and a deeply bound hole-state is so fragmented to be essentially unobservable
- In a hypernucleus the distinguishable Λ may occupy any orbital leading to well defined, sharp set of states
- Only practical way to study ΛN strong and weak interaction

Λ Hypernuclei production reactions

1) Strangeness Exchange (DA Φ NE, BNL-AGS) $K^- + N \rightarrow \Lambda + \pi$ $K^- + {}^{A}Z \rightarrow \pi^- + {}^{A}_{\Lambda}Z$

2) Associated Production (BNL-AGS, KEK-12 GeV PS) $\pi^+ + n \rightarrow \Lambda + K^+$ $\pi^+ + {}^{A}Z \rightarrow K^+ + {}^{A}_{\Lambda}Z$

- 3) Electroproduction (JLAB) $\gamma(e) + p \rightarrow \Lambda + (e') + K^+ e^{+A}Z \rightarrow K^+ + {}^{A}_{\Lambda}Z + e'$
- 4) Heavy ions collisions, antiproton annihilation
 > 90% of the present information on Hypernuclear
 Physics comes from processes 1) and 2); 3) from ~2000

Λ Hypernuclei production reactions

Present Status of Λ Hypernuclear Spectroscopy

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564

Hypernuclear spectroscopy

Highly complementary tools !!

EINN09 September 28-October 2 2009 Milos Island, Greece

Hypernuclear spectroscopy

Binding energy proportional to A, 1 MeV/A

Purpose: to understand B-B interactions

- NN interaction known from elastic scattering data, well reproduced by phenomenological meson exchange and quark-cluster models
 - YN, YY interaction poorly known, few scattering data, low yields, short lifetime

In Λ hypernuclei:

- no Pauli effect
- straightforward extraction of ΛN interaction
- Peak position well reproduced by

simple Woods-Saxon potential

Hypernuclear spectroscopy

 hypernuclear wave function decomposed into a core nucleus and a Λ hyperon:

$$H = H_{core} + t_{\Lambda} + \Sigma V_{\Lambda N}^{eff}$$

- + $V_{\Lambda N}^{eff}$ constructed from the two-body interaction in free space, $V_{\Lambda N}^{free}$
- s-shell hypernuclei (A≤5): V_{ΛN}^{eff} calculated directly from V_{ΛN}^{free}, B of g.s. and excited states compared with experimental data
- p-shell hypernuclei (6≤A≤16): direct calculation not sufficient to describe the data \rightarrow phenomenological (shell model) approach to the effective interaction Δ S_{Λ} S_{N}

$$V_{\Lambda-N}(r) = V_0(r) + V_{\sigma}(r)\vec{s}_N\cdot\vec{s}_{\Lambda} + V_{\Lambda}(r)\vec{l}_{N\Lambda}\cdot\vec{s}_{\Lambda} + V_N(r)\vec{l}_{N\Lambda}\cdot\vec{s}_{N}$$
$$+ V_{\tau}(r)[3(\vec{\sigma}_N\cdot\vec{r})(\vec{\sigma}_{\Lambda}\cdot\vec{r} - \vec{\sigma}_N\cdot\vec{\sigma}_{\Lambda})]$$

 Δ , S_{Λ}, T from s_{Λ} coupled to non-zero spin core states

• need of high resolution spectroscopy

Each of the 4 terms (Δ , S_{Λ} , S_{N} , T) correspond to a radial integral that can be phenomelogically determined from the low-lying level structure of *p*-shell hypernuclei

FINUDA @ DA Φ NE

 $e^{+} + e^{-} \rightarrow \phi (1020) \rightarrow K^{+} + K^{-} (127 \text{ MeV/c}) \sim 49.1\%$ $K^{-}_{\text{stop}} + {}^{\textbf{A}}Z \rightarrow {}^{\textbf{A}}_{\Lambda}Z + \pi^{-} (\sim 270 \text{ MeV/c})$

✓ K⁻: low energy, monochromatic (Γ_{ϕ} = 4.43 MeV), tagged, background free

✓ very thin nuclear targets $(0.1 \div 0.3 \text{ g/cm}^2)$

- \checkmark irradiation of different targets in the same run
- $\checkmark \Delta \Omega \sim 2\pi$ srad
- ✓ PID: dE/dx vs p & TOF

$$M_{hyp} = [(m_{K} + M_{A} - E_{\pi})^{2} - p_{\pi}^{2}]^{1/2}$$

$$B_{\Lambda} = M_{A-1n} + M_{\Lambda} - M_{hyp}$$

MM spectroscopy

2003 data taking: 190 pb⁻¹ (2x⁶Li, ⁷Li, 3x¹²C, ²⁷Al, ⁵¹V) 2006 data taking: 966 pb⁻¹ (2x⁶Li, 2x⁷Li, 2x⁹Be, ¹³C, D₂O)

EINN09 September 28-October 2 2009 Milos Island, Greece

¹²_AC: best known hypernucleus

⁷_ALi hypernucleus

FWHM: 1.65 to 1.95 MeV

Peaks	B_A or E_X (MeV)	FWHM (MeV)
#1 #2 #3 #4 #5	$B_A = 5.22 \pm 0.08$ $E_X = 2.05 \text{ (fixed)}$ $E_X = 3.88 \text{ (fixed)}$ $E_X = 5.61 \pm 0.24$ $E_X = 7.99 \pm 0.37$	1.81 (fixed) 1.81 (fixed) 1.81 (fixed) 1.81 (fixed) 3.81 ± 0.81
(8 3 2	a) ⁷ Li ($\pi^+, K^+\gamma$) KEK E419 (MeV) 3.563 0 ⁺ 1/2 ⁺ 3.88 T=1 4 4 1/2 ⁺ 3.88 H. Tamura et al. Nucl. Phys. A 754 (20) 0 1/6 Li 7/2 ⁺ 2.521 0 2.186 3 ⁺ 4 4 1/2 ⁺ 2.521 0 1/2 ⁺ 2.521 0 1/2 ⁺ 0.692 excitation energies are the ground state $B_{\Lambda} = -5$ [M. Juric et al. Nucl. Phys	2005) 58c referred to .58 ± 0.03 MeV s. B 52 (1973) 1]

O. Hashimoto, H. Tamura, Pr.Part.Nucl.Phys. 57 (2006) 564

capture Rate per stopped K-
#1: 0.041 ± 0.006 ± 0.005 %
#2: 0.058 ± 0.008 ± 0.006 %
#3: 0.043 ± 0.006 ± 0.005 %
#4: 0.052 ± 0.007 ± 0.006 %

${}^{9}_{\Lambda}$ Be hypernucleus

B[∧] **= -6.61 ± 0.04 MeV** M. Juric et al. Nucl. Phys. B **52** (1973) 1

588 O. Hashimoto, H. Tamura / Progress in Particle and Nuclear Physics 57 (2006) 564-653

Table 8

Excitation energies and cross sections of ${}^{9}_{A}$ Be in the (π^{+}, K^{+}) reaction measured in the KEK E336 experiment

Peaks	B_A or E_X (MeV)	FWHM (MeV)	Cross sections $\sigma_{2^\circ-14^\circ}(\mu b)$
#1	$B_A = 5.99 \pm 0.07$	1.99 (fixed)	0.181 ± 0.009
#2	$E_{\chi} = 2.93 \pm 0.07$	1.99 (fixed)	0.340 ± 0.012
#3	$E_X = 5.80 \pm 0.13$	1.99 (fixed)	0.141 ± 0.009
#4	$E_X = 9.52 \pm 0.13$	1.99 (fixed)	0.198 ± 0.013
# 5	$E_X = 14.88 \pm 0.10$	1.99 (fixed)	0.412 ± 0.024
#6	$E_X = 17.13 \pm 0.20$	1.99 (fixed)	0.238 ± 0.022
#7	$E_{\chi} = 19.54 \pm 0.32$	1.99 (fixed)	0.143 ± 0.021
#8	$E_X = 23.40 \pm 0.21$	1.99 (fixed)	0.220 ± 0.027

capture Rate per stopped K-
#1: 0.022 ± 0.006 ± 0.002 % #2: 0.036 ± 0.008 ± 0.004 % #3: 0.027 ± 0.006 ± 0.003 %

¹³^AC hypernucleus

a.u. μ_{G1}:(-11.1 8 MeV 0.8 μ_{G2}: -6.24 MeV Ex. 4.94 MeV μ_{G3}: -2.85 MeV E_v: 8.33 MeV 0.6 μ_{G4}: -0.12 MeV E_v: 11.06 MeV μ_{G5}: 3.93 MeV E_x: 15.11 MeV 0.4 0.2 ملي اللي المراجع الم 0 -50 -40 -30 -20 -10 0 10 - B_A (MeV)

B_∧ = -11.22 ± 0.08 MeV M. Juric et al. Nucl. Phys. B **52** (1973) 1

Peaks	B_A or E_X (MeV)	FWHM (MeV)	Cross sections $\sigma_{2^\circ-14^\circ}(\mu b)$
#1	$B_A = 11.38 \pm 0.05$	2.23 ± 0.06	0.25 ± 0.02
# 2	$E_X = 4.85 \pm 0.07$	2.23 ± 0.06	0.42 ± 0.02
#3	$E_X = 9.73 \pm 0.14$	2.23 ± 0.06	0.22 ± 0.02
#4	$E_X = 11.75 \pm 0.15$	2.23 ± 0.06	0.30 ± 0.02
# 5	$E_X = 15.31 \pm 0.06$	2.46 ± 0.08	1.29 ± 0.04
#6	$E_X = 23.68 \pm 0.16$	2.20 ± 0.29	0.33 ± 0.04
#7	$E_X = 26.37 \pm 0.11$	2.41 ± 0.17	0.76 ± 0.06

O. Hashimoto, H. Tamura, Pr.Part.Nucl.Phys. 57 (2006) 564

capture Rate per stopped K-#1: 0.006 ± 0.001 ± 0.001 % #2: 0.014 ± 0.002 ± 0.002 % #3: 0.018 ± 0.002 ± 0.002 % #4: 0.024 ± 0.003 ± 0.003 % 0.035 + 0.005 + 0.004 %

${}^{16}_{\Lambda}O/{}^{15}_{\Lambda}N$ hypernuclei

Table 11								
Excitation	energies	and cross	sections	of ¹⁶ O i	n the (π	τ ⁺ , Κ	+) read	tion

Peaks	B_A or E_X (MeV)	FWHM (MeV)	Cross sections $\sigma_{2^{\circ}-14^{\circ}}(\mu b)$
#1	$B_A = 12.42 \pm 0.0$	2.75 ± 0.05	0.41 ± 0.02
#2	$E_X = 6.23 \pm 0.06$	2.75 ± 0.05	0.91 ± 0.03
#3	$E_X = 10.57 \pm 0.06$	2.75 ± 0.05	1.05 ± 0.03
#4	$E_X = 16.59 \pm 0.07$	3.13 ± 0.11	1.38 ± 0.06

O. Hashimoto, H. Tamura, Pr.Part.Nucl.Phys. 57 (2006) 564

		Study of A-Hypern Hirokazu TAMURA, R and To	uclei with Stopp yugo S. HAYANO, shimitsu YAMAZAI	ed K ⁻ Reaction Haruhiko OUTA* KI*	
	Hypernuclear states peak state		B_d (MeV)	Formation Probability per stopped $K^-(\%)$ per $\Lambda\pi^-(\%)$	
16 40	A	$(p_{1/2})_n^{-1}(s_{1/2})_A$	12.9±0.4	0.013 ± 0.004	0.37±0.13
	в	$(p_{3/2})_n^{-1}(s_{1/2})_A$	6.53 ± 0.18	0.030 ± 0.005	0.86 ± 0.30
	С	$(p_{1/2})_n^{-1}(p_{1/2,3/2})_A$	2.08 ± 0.18	0.056 ± 0.008	2.0 ± 0.7
	D	$(p_{3/2})_n^{-1}(p_{1/2,3/2})_A$	-4.23 ± 0.09	0.112 ± 0.014	3.2 ± 1.1

capture <u>Rate</u> per stopped K-					
#1:	0.004 ± 0.002 ± 0.001 %				
#2 :	0.021 ± 0.004 ± 0.002 %				
#3+4 :	0.060 ± 0.014 ± 0.008 %				
#5+6 :	0.059 ± 0.013 ± 0.007 %				

Results on ¹²C target – Hypernuclear Spectrum of ${}^{12}B_{\Lambda}$

September 28-October 2 2009 Milos Island, Greece

EINN09

Hyperball @ KEK & BNL (from 1998)

ÉINN09

September 28-October 2 2009 Milos Island, Greece

Weak decay of hypernuclei

- Λ free weak decay: •

 - $\begin{array}{ccc} & \Lambda \rightarrow p\pi^{-} & \text{B.R. 63.9\%} \\ & \Lambda \rightarrow n\pi^{0} & \text{B.R. 35.8\%} \end{array} \right\}$

N momentum ~ 100 MeV/c

- $\Delta I = \frac{1}{2}$ rule holds for weak decays involving strange quarks
 - Phenomenological rule
- Hypernucleus decay: ٠
 - $E^* \rightarrow E^{*'}(\gamma, N, \alpha, ...)$ (standard Nuclear Physics)

 \rightarrow q.s. (γ , N, α , ...)

- Constituent Λ weak decay, from g.s.
- The Λ mesonic decay (Γ M) is suppressed in nuclear matter due to the Pauli blocking ٠ of the nucleon in the final state
 - Non mesonic decays in hypernuclei: <u>4 body interactions (medium effect!!</u>)
 - $\Lambda p \rightarrow pn$ branching ratio: Γp
 - $\Lambda n \rightarrow nn$ branching ratio: Γn
 - $\Lambda NN \rightarrow NNN$ branching ratio: $\Gamma 2$ $\Gamma tot = \Gamma M + \Gamma p + \Gamma n + \Gamma 2$
 - $A_{\Lambda}Z \rightarrow (A-2)(Z-1) + n + p$
 - $A_{\Lambda}^{(A-2)}Z + n + n$ N momentum ~ 400 MeV/c
 - $A_{\Lambda}Z \rightarrow (A-3)(Z-1) + n + n + p$
 - $\Gamma p/\Gamma n$ ratio measurements to assess the validity of the $\Delta I = \frac{1}{2}$ rule (non π case)
 - $\Gamma p/\Gamma n$ puzzle: "solved" with $\Gamma 2$ and coincidence measurements

EINN09 September 28-October 2 2009 Milos Island, Greece

Hypernuclear decay

FINUDA Strategy: coincidence measurement

charged Mesonic channel

 $K^{-}_{stop} + {}^{A}Z \rightarrow {}^{A}_{\Lambda}Z + (\pi^{-})$ $A_{\Lambda}Z \rightarrow A(Z+1) + \pi^{-1}$ S-EX **MWD** 260-280 MeV/c 80-110 MeV/c EINN09

charged Non-Mesonic channel

September 28-October 2 2009 Milos Island, Greece

Mesonic weak decay spectra

T. Motoba et al, Progr. Theor. Phys. Suppl. 117 (1994) 477.

Mesonic decay ratio: $\Gamma_{\pi^-}/\Gamma_{\Lambda}$

$\Gamma_{\text{tot}} / \Gamma_{\Lambda} = (0.990 \pm 0.094) + (0.018 \pm 0.010) \bullet A$

fit from measured values for A=4-12 hypernuclei

Non Mesonic Weak Decay spectra

EINN09 September 28-October 2 2009 Milos Island, Greece

FSI & ΛNN contribution evaluation

Search for neutron-rich hypernuclei

- Hypernuclei with a large neutron excess
- Their existence has been theoretically predicted (*L. Majling, NP A 585 (1995) 211c*) but not experimentally observed yet

The Pauli principle does not apply to the Λ inside the nucleus

- → A larger number of neutrons may occupy the bound nuclear levels
- \rightarrow *extra* binding energy (Λ "*glue-like*" role)

- Study of the hypernuclear structure properties (size, shape, ...) at very high *N/Z*;
- ✓ Feedback with the astrophysics field: phenomena related to *high-density nuclear matter* in neutron stars

HYPER- NUCLEUS	HYPERNUCL. STATE	B _Λ (MeV)	PRODUCTION RATE / K ⁻ stop	REFERENCES
¹² Be	1 ⁻ (g.s.)	11.4 &	< 6.1 · 10 ^{-5 +} 1.8 · 10 ^{-5 °}	⁺ <i>MEASURED</i> (90% C.L. <i>Upper Limit</i>) K. Kubota et al., <i>NP A 602 (1996) 327</i>
	0+ (exc.s.)	?	6.0 · 10 ^{-6 °}	^O THEORETICAL EVALUATION T. Tretyakova, D. Lanskoy, NP A 691 (2001) 351c
۴ ^۷ Н	0+ (g.s.)	4.1 * 4.2 &	?	* THEORETICAL EVALUATION Y. Akaishi, Frascati Phys. Series,Vol. XVI (1999) 59
⁷ ∧H	0+ (g.s.)	5.2 &	?	& EXTRAPOLATION FROM DATA L. Majling, NP A 585 (1995) 211c

EINN09 September 28-October 2 2009 Milos Island, Greece

Neutron-Rich Hypernuclei production in FINUDA

FINUDA results on NRH

Perspectives for hypernuclear physics

Double Λ hypernuclei present status

K. Nakazawa – HYP-X (2009)

The status of the art

The status of the art

Comparisons with theory and KEK results

